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Abstract

Heat stress experienced by firefighters is a common consequence of extreme firefighting activity. 

In order to avoid the adverse health conditions due to uncompensable heat stress, the prediction 

and monitoring of the thermal response of firefighters is critical. Tissue properties, among other 

parameters, are known to vary between individuals and influence the prediction of thermal 

response. Further, measurement of tissue properties of each firefighter is not practical. Therefore, 

in this study, we developed a whole body computational model to evaluate the effect of variability 

(uncertainty) in tissue parameters on the thermal response of a firefighter during firefighting. 

Modifications were made to an existing human whole body computational model, developed in 

our lab, for conducting transient thermal analysis for a firefighting scenario. In conjunction with 

nominal (baseline) tissue parameters obtained from literature, and physiologic conditions from a 

firefighting drill, the Pennes bioheat and energy balance equations were solved to obtain the core 

body temperature of a firefighter. Subsequently, the uncertainty in core body temperature due to 

variability in the tissue parameters (input parameters), metabolic rate, specific heat, density, and 

thermal conductivity was computed using the sensitivity coefficient method. On comparing the 

individual effect of tissue parameters on the uncertainty in core body temperature, the metabolic 

rate had the highest contribution (within ±0.20°C) followed by specific heat (within ±0.10°C), 

density (within ±0.07°C), and finally thermal conductivity (within ±0.01 °C). A maximum overall 

uncertainty of ±0.23 °C in the core body temperature was observed due to the combined 

uncertainty in the tissue parameters. Thus, the model results can be used to effectively predict a 

realistic range of thermal response of the firefighters during firefighting or similar activities.
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Introduction

Firefighters often perform strenuous physical activity while enduring intense heat during 

firefighting scenario. Heat generated by the body, compounded by the ineffective heat 

dissipation away from the body due to the presence of firefighting protective ensemble, 

causes heat stress in the body [1]. Heat stress, and the consequent elevation in body 

temperature, increases the heat strain. This can lead to adverse health effects, including 

unconsciousness and cardiac arrest. Thus, the accurate prediction of thermal response of the 

human body during firefighting scenarios is of high importance.

Significance of Tissue Parameters.

Multiple factors are known to have an effect on the thermal response including physical 

characteristics of the human body, body dynamics, as well as environmental conditions. In 

particular, tissue parameters such as metabolic rate, q̇, specific heat, c, density, ρ, thermal 

conductivity, k, and blood perfusion, ω, are known to play an important role in the 

determination of thermal response in the human body [2]. More importantly, these tissue 

parameters show significant variation among different individuals at resting condition [2–5]. 

Therefore, an accurate estimation of the thermal response computed over a physiologic 

range of tissue parameters is critical for preventing an adverse or fatal condition during 

firefighting.

Evaluation of Tissue Parameters.

A number of studies have listed the physical parameters of tissues. For example, several 

studies have reported the values of thermal conductivity [6–9], specific heat [7,10,11], 

density [12–15], and metabolic rate [16,17] of human tissue. Furthermore, comprehensive 

databases of tissue parameters obtained by consolidating the values reported in literature are 

also available. An extensive review of physical properties of mammalian tissue, mainly 

thermal conductivity, specific heat, and thermal diffusivity, has been conducted by Duck [4]. 

Along with the physical properties of tissues, the techniques for the measurement of these 

properties have also been discussed in the study. Further, McIntosh and Anderson [2,3] 

conducted a comprehensive review of tissue parameters of humans at rest condition. The 

values and the statistical information about the spread of data for the parameters, q̇, c, ρ, k, 

and ω of a number of tissues were quantified. These data can be utilized as inputs to 

computational models to analyze the temperature distribution in the human body.

Computational Analysis.

Computational analysis is an effective means for conducting a parametric study; such 

analysis provides the flexibility to manipulate the geometry and physiological parameters of 

the human body and simulate adverse events like unfavorable environmental conditions. The 

earliest computational thermal model was developed by Pennes [18] to predict the 
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temperature distribution in a human arm. Subsequently, several whole body computational 

models were developed for several applications, including firefighting applications and 

incorporated the Pennes’ bioheat equation to assess the temperature distribution. A 

predictive heat strain (PHS) model [19] was developed to evaluate the physiological 

responses of human subjects while wearing different protective garments, which included a 

firefighting suit. The temperature predicted after walking on a treadmill at 1.25 m/s for 63 

min was found to be 1.8 °C higher than the observed value [19]. Further, a thermoregulatory 

model to predict the skin and core temperatures in firefighters was developed by Kim et al. 

[20]. The study compared the temperatures predicted by the model with the thermal 

responses of subjects who had worn the firefighting suit while exercising. A maximum 

difference of 0.6 °C was observed between the computed and experimentally obtained core 

temperatures. Although these studies predicted the thermal response of firefighters, they 
failed to analyze the effect of variation in tissue parameters on the body temperature.

More recently, a few numerical studies have assessed the effect of variation in tissue 

parameters on the temperature distribution in different regions of the human body. A heat 

transfer model of the skin tissue was developed by Cetingul and Herman [21] for the 

detection of lesions by analyzing the transient thermal response of the skin layers. The effect 

of variation in q̇, c, k, ω and thickness of the skin layers on the surface temperature 

distribution were investigated in this study. As the variations in these parameters were less 

for the skin layers, the corresponding variability in temperature was also found to be less. A 

human brain electromagnetic-thermal dosimetry model was developed by Cvetković et al. 

[22]. The temperature rise due to the absorption of the electromagnetic energy and the 

sensitivity of steady-state temperature to the variations in tissue parameters was assessed. 

The parameters considered for the sensitivity analysis were the arterial blood temperature, 

tissue parameters like q̇, ω, and k, and boundary conditions like heat transfer coefficient and 

ambient temperature. However, these studies focus on only specific regions in the human 
body and not on the whole body.

Our group previously developed a whole body computational model to analyze the thermal 

response of humans at exercise and cold water immersion scenarios [23–25]. We further 

modified the whole body computational model [23] to predict the thermal response of a 

firefighter during a firefighting training drill [26,27]. Using this computational model in 

conjunction with available physiologic tissue parameters obtained from literature, we 

conducted an uncertainty quantification analysis to evaluate the effect of variability in tissue 

parameters on the numerical core body temperature, Tc_N. The objective of this research was 
to determine the uncertainty in Tc_N due to (1) individual and (2) combined variability in 
tissue parameters: q̇, c, ρ, and k.

Methods

Details of the firefighting drill, the computational model, and the methodology used for 

conducting the uncertainty analysis are described in the following paragraphs.
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Firefighting Training Drill.

Experimental data from the previous studies describing a firefighting training drill were used 

to develop the human whole body computational model. A typical training drill consisted of 

alternating firefighting scenarios and rest periods [28,29]. The firefighting scenarios 

consisted of (1) search for the origin of flame, (2) hose advancement, and (3) search and 

rescue of the victim. De-identified datasets including the heart rate, experimental core body 

temperature (Tc_E), and physiological details of a single firefighter (age = 33 yr, weight = 

86.7 kg) were obtained from Mani et al. [29] and used in this study. The experimental study, 

conducted by Mani et al. [29], was approved by University of Cincinnati Institutional 

Review Board and the firefighter provided informed consent prior to participating in the 

study. The Tc_E was measured using a radio pill (CoreTemp, HQ, Inc., Palmetto, FL)., which 

was ingested by the firefighter prior to the drill. The heart rate of the firefighter was recorded 

at an interval of 20 s. Figure 1 represents the experimentally obtained heart rate values of the 

firefighter recorded during the firefighting training drill. In the figure, “Sc” represents the 

firefighting scenario and “R” represents the rest periods.

Whole Body Geometry and Firefighting Suit.

The 3D whole body computational model, shown in Fig. 2(a), comprised of several 

geometric shapes including cylinders, cuboids, and a sphere to represent the limbs, torso, 

and head, respectively [23,26]. Four domains constituted the whole body model: head, 

muscle, organ, and gut. An additional suit layer was incorporated to simulate the effects of 

the firefighting suit at extreme atmospheric conditions. The firefighting suit, comprising of a 

jacket covering the torso and hands, and pants covering the legs, was modeled as an external 

layer of 7 mm thickness (Fig. 2(a)). The 3D model with the entire firefighting suit layer was 

used for computations throughout the firefighting scenario while the model ignored the 

influence of the suit (jacket layer) for computations during the rest periods.

Governing Equations.

Based on the previous model developed by our group [23], the Pennes’ bioheat equation and 

the energy balance equation (please see Eqs. (A1) and (A2) in the Appendix section) were 

simultaneously solved in order to determine the thermal response of the whole body. For the 

firefighting application evaluated in this study, additional modifications were made to the 

previous model which are described below.

Tissue and Firefighting Suit Properties.

All the tissues and organs were categorized into four groups corresponding to four domains 

(head, organ, muscle, gut) of the whole body model. Details of the tissue parameters 

including the mean values and percentage uncertainties are presented in Tables 1 and 2. The 

metabolic rate and perfusion for each domain were determined by calculating the mass 

weighted average of metabolic rate and perfusion values of all the tissues (e.g., heart, lungs, 

liver, etc.) belonging to each domain. Further, the mass weighted average value of thermal 

conductivity, k, specific heat, c, and density, ρ, were computed for the whole body. Since 

each tissue property had a range of values, the minimum, maximum, and nominal (baseline) 
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mass weighted average tissue property value for a domain/body were calculated using Eqs. 

(1)–(3), respectively.

Xmin =
∑ xmin, tissue mtissue 

∑mtissue 
(1)

Xmax =
∑ xmax, tissue mtissue 

∑mtissue 
(2)

Xn =
Xmin + Xmax

2 (3)

ux = Xn − Xmin = Xmax − Xn (4)

The minimum and maximum value of any property of an individual tissue are xmin,tissue 

and xmax,tissue, respectively, and mtissue is the mass of the individual tissue. The 

(experimental) uncertainty, ux, of a tissue property was calculated using Eq. (4).

It may be noted that the uncertainty in metabolic rate was determined by assessing the 

resting metabolic rate of the whole body for different subjects [17]. In order to determine the 

resting metabolic rate for each domain of the whole body model, the resting metabolic rate 

values of individual tissues (e.g., heart, lungs, liver, etc.) [2,3,16] were utilized. The mass-

weighted average metabolic rate calculated using this method was about 3200 kcal/day. 

However, this value was found to be higher than the physiologic average metabolic heat 

generation of 2000 kcal/day (96.85 W), reported [23,30,31] for a resting human being. 

Therefore, the metabolic rate value of each domain was scaled down to obtain the 

physiologic average energy consumption value. Corresponding to the two sets of metabolic 

rate values, two numerical core body temperatures were determined: Tc_N* , based on the 

metabolic rate values obtained from literature, q̇*, and Tc_N, based on the scaled-down 

metabolic rate values, q̇ ⋅ Tc−N*  and Tc_N in the current study were defined as the average 

tissue temperature of the gut region. The material properties of the firefighting suit were 

unavailable and were considered as proprietary information. Therefore, the material 

properties of the suit were based on the literature [32,33] and are reported in Table 3.

Instantaneous Metabolic Rate.

The instantaneous metabolic rate, q̇m, in the Pennes’ equation (Eq. (A1) in the Appendix) is 

given by [34]

q̇m = ∑ q̇iV i +
HR−HR0 BSA

RM
1

Vbody
(5)
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where q̇i and Vi are the resting volumetric metabolic rate and volume of individual domain, 

respectively; HR is the current heart rate; HR0 is the experimentally recorded initial heart 

rate; RM is the increase in heart rate per unit metabolic rate; and BSA is the body surface 

area. RM and BSA are defined as

RM =
HRmax − HR0

MWC−
∑ q̇iVi
BSA

(6)

BSA = 0.202 * W0.425h0.725 (7)

where HRmax is the maximum heart rate and MWC is the maximum working capacity 

defined as

HRmax = 205 − (0.62A) (8)

MWC = (41.7 − (0.22A))W0.666 (9)

where A is the age and W is the weight of the firefighter. In the model, 92% of the increase 

in metabolic rate was transferred to the muscle domain while the remaining was assigned to 

the organ domain [35]. The perfusion values for muscle and organ were allowed to vary with 

their respective metabolic rate values. However, perfusion values were limited between 

0.0005 and 0.0115 s−1 based on the physiologic variation in cardiac output (5–40 L/min).

Cardiac Output and Stroke Volume.

Cardiac output was defined as the volume of blood being pumped by the heart per unit time. 

This, in the context of the current study, was the volumetric summation of perfusion in the 

body. Thus, the cardiac output is given by

Cardiac Output  = ωhe × Vhe + ωmu × Vmu + ωor × Vor + ωgu × Vgu (10)

where the subscripts “he,” “mu,” “or,” and “gu” refer to the domains, head, muscle, organ, 

and gut. The stroke volume was calculated by dividing the cardiac output by the heart rate.

Boundary Conditions.

When the increase in perfusion was inadequate to regulate the body temperature, sweating 

was triggered to increase the removal of excess heat from the muscles [23,26]. This can be 

expressed as

−kt
∂T t
∂n at surface 

= h T t − Tair  at surface + E (11)

where n is the normal direction of the skin surface, h is the heat transfer coefficient, and Tair 

is the ambient air temperature. E represents the heat loss due to sweating, which was 
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calculated as a function of the evaporative heat transfer rate, he, and the difference between 

the vapor pressure of water at the skin temperature, psk, and the partial pressure of water 

vapor in the ambient air, pair. Additional details about psk and pair can be found in our 

previous study [23]. The expression for E [30] is given as

E = 0.1333 kPa
mm Hg w f clhe psk − pair (12)

The skin wettedness factor, w, indicated the amount of skin layer that was covered with 

sweat and it varies between 0 and 1 [26,30]. The estimation of w is challenging, particularly 

in events like firefighting as it is dependent on factors such as amount of skin exposure, 

time, clothing, ambient temperature, removal of sweat using absorbent, and humidity [36]. 

Therefore, in the present study, the w was calculated based on the slope of Tc_E and the 

duration of the rest periods. The optimized w value of 0 for rest period R1 and 0.3 for rest 

period R2 was used for the computations [26,27]. The value of the intrinsic clothing thermal 

efficiency, fc1, [30] was kept at 0.36 [26] for the torso and head regions during the rest 

periods.

The h and Tair values were provided as the boundary conditions to the model. At ambient 

conditions (Tair = 25 °C), the h value of 4.7 W/m2 °C was iteratively determined by 

satisfying the steady-state condition [23], wherein, the tissue temperature is equal to initial 

Tblood value of 37 °C.

Uncertainty Analysis.

The whole body model was used to quantify the uncertainty in numerical core body 

temperatures (Tc−N*  and Tc_N) due to variability in the tissue parameters (input parameters). 

The sensitivity coefficient method, which is a local approach, was used for conducting the 

uncertainty analysis [37]. The overall uncertainty in each numerical core body temperature 

can be calculated by

u2 = ∑
i = 1

n ∂S
∂Xi

uxi

2
(13)

where u is the simulation uncertainty, S is the simulation result (Tc−N*  or Tc_N), Xi represents 

the ith input parameter, ∂S/∂Xi is the sensitivity coefficient, uxi
 is the experimental 

uncertainty in the ith input parameter, and n is the number of input parameters. The 

expression for the sensitivity coefficient, obtained using Taylor series expansion, is given as

∂S
∂Xi

=
S X1…, Xi + ΔXi, …, Xn − S X1, …, Xi − ΔXi, …, Xn

2ΔXi
+ O ΔXi

2 (14)

where terms of second-order and higher are truncated, thus resulting in a second-order 

accurate central difference solution. Each input parameter was perturbed above and below its 

mean (baseline) value by a relative perturbation size, ΔX/X, of 10−4. This relative 
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perturbation size was selected based on the recommended values in the ASME V&V 20, 

2009 [37] for minimizing the truncation and round-off errors. Subsequently, the Tc_N values, 

computed using the perturbed input parameters, were used to obtain the sensitivity 

coefficient (Eq. (14)). The uncertainty, u, in Tc_N was then calculated using Eq. (13). Thus, 

the total uncertainty, u, accounts for the perturbation (∂S/∂Xi) of input parameter and the 

variability (ux) in human subjects.

To determine the uncertainty in Tc_N, 2n + 1 computations were performed where n is the 

number of input parameters. Although four tissue parameters (k, ρ, c, q̇) were chosen as 

input parameters for the uncertainty analysis, a different q̇ value was assigned to each of the 

four domains (q̇he, q̇mu, q̇or, q̇gu) for the computations. Considering each q̇ to be a separate 

input parameter resulted in a total of seven input parameters. The uncertainty in Tc−N*  due to 

variability in k, ρ, c, and q̇* was determined by adopting the same methodology.

The Pennes equation (Eq. (A1) in the Appendix) was solved by utilizing a first-order 

implicit transient scheme which is inherently stable and a second-order spatial discretization 

scheme. Further, an implicit formulation was employed to solve the energy balance equation 

(Eq. (A2) in the Appendix) [23]. A fixed time-step size of 20 s was used for a total time of 

95 min (285 time-steps) to solve the transient thermal response. This size of the time-step 

was selected based on the acquisition of heart rate data [29]. Further, the energy residuals 

were converged to 10−10 at each time-step. For each time-step, approximately eight 

iterations were required for achieving convergence. In addition, a mesh independence study 

was conducted on the whole body model. The mesh was refined until the change in steady-

state temperature was less than 1% at ambient conditions (Fig. 2(b)). A total of 340,000 

tetrahedral elements were used to discretize the human whole body computational domain. 

For all the computations, a finite volume solver (FLUENT, ANSYS, Inc., Canonsburg, PA) was 

used. User-defined functions, written in C programming language, were used to assess the 

effects of perfusion (Eq. (A1) in the Appendix), solve the energy balance equation (Eq. (A2) 

in the Appendix), and to compute the instantaneous metabolic rate (Eq. (5)) and heat loss 

due to sweating (Eq. (12)). Further details regarding the numerical schemes used for solving 

the governing equations are given in our previous study [23]. The individual uncertainty in 

Tc_N and Tc−N*  was initially evaluated by perturbing each tissue property at a time while 

keeping other input parameters at baseline values. Subsequently, the overall uncertainly at 

Tc_N and Tc−N*  was obtained by combining the individual uncertainties using Eq. (13).

Results

The transient variations in the core body temperature of the firefighter were determined 

using a whole body computational model. The Tc_N was quantified by accounting for 

individual and combined effects of variability in tissue parameters: specific heat, c, density, 

ρ, and conductivity, k, as well as metabolic rate, q̇. Additionally, the cardiac output and the 

stroke volume were also determined.
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Temperature Distribution.

The temperature contours at steady-state (prefirefighting scenario) and during a firefighting 

scenario (t= 60 min) are provided in Figs. 3(a) and 3(b), respectively. The firefighting 

training drill of 95 min consisted of alternating firefighting scenarios, Sc, and rest periods, 

R. The computed steady-state temperature varied between 27.6 °C in the suit layer to 

37.5 °C in the internal organs and gut region (Fig. 3(a)). Lower temperatures were observed 

at the surface region of the whole body domain. Nearly uniform temperatures were observed 

in the inner regions, such as the torso and legs. The Tc_N, defined as the average tissue 

temperature of the gut domain, was observed to be 37.4 °C. As a representative case, Fig. 

3(b) shows the temperature distribution at the end of the second firefighting scenario (Sc2). 

The temperature field was found to be somewhat uniform in the inner regions. This is 

similar to that observed for the steady-state case (Fig. 3(a)). However, the temperature 

increased during the firefighting scenario and varied from 28.0 °C in the suit layer to 38.2 °C 

in the internal organs and gut. The corresponding Tc_N was calculated to be 38.2 °C and was 

around 2% higher than the steady-state Tc_N.

Temporal Variations in the Core Body Temperatures.

The Tc_E was compared with the numerical core body temperature, Tc−N* , as shown in Fig. 

4(a). The Tc−N*  was computed using rest metabolic rate values, q̇*, obtained from previous 

studies [2,3,16,17]. The variations between Tc−N*  and Tc_E were observed to increase at 

higher temperatures (Fig. 4(a)). At Sc3 (t = 95 min), Tc−N*  was 40.0 °C while Tc_E was 

38.6 °C resulting in a maximum difference of 1.4°C or 3.6% { = [(40.0–38.6)/38.6] × 

100%}. A comparison of the numerical core body temperature, Tc_N, based on scaled-down 

metabolic rate, q̇, with Tc_E is shown in Fig. 4(b). A maximum deviation of 0.3 °C or 0.8% 

{=[(38.3 – 38.0)/38.3] × 100%} was observed at Sc2 (t = 54 min) between Tc_E (38.3 °C) 

and Tc_N (38.0 °C). This difference was comparatively better than the difference noted 

between Tc−N*  and Tc_E (Fig. 4(a)). Consequently, hereafter in the Results section, the 

individual uncertainty due to variability in each tissue parameter is reported for Tc_N and not 

for T*c_N. However, the overall uncertainty is reported for both Tc_N and T*c_N.

Effect of Specific Heat, c, Density, ρ, and Conductivity, k.

The uncertainty in transient Tc_N due to variability in c is represented in Fig. 5(a). The 

uncertainty in c was reported to be 6.6% (Table 1). Accounting for this uncertainty, a 

maximum uncertainty of ±0.10 °C in Tc_N was observed (Sc3, t = 95 min). Figure 5(b) 

illustrates the influence of variability in ρ on the transient Tc_N. A 4.3% uncertainty in ρ 
resulted in a maximum uncertainty of ±0.07 °C (Sc3, t = 95min) in Tc_N. Figure 5(c) 

illustrates the effect of variation in k on the transient Tc_N. A maximum uncertainty of 

±0.01 °C in Tc_N (Sc3, t = 95min) was observed due to an uncertainty of 6.3% in k. It was 

observed that the c had more influence on Tc_N compared to ρ and k. Furthermore, in the 

above three cases, the uncertainty in Tc_N increased with the elevation in Tc_N value. For 

example, when the Tc_N was 38.3 °C, the uncertainty associated with it due to variability in 
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c was observed to be ±0.06 °C (Fig. 5(a)). When the value increased to 38.8 °C, the 

corresponding uncertainty was ±0.10°C.

Effect of Rest Metabolic Rate, q̇.

Figure 6 illustrates the uncertainty in transient Tc_N due to variability in q̇. As a result of an 

18.4% variability in q̇, a maximum uncertainty of ±0.20 °C was observed in Tc_N (t = 95 

min). Uncertainty in Tc_N increased when the Tc_N value got elevated. For example, the 

uncertainties in Tc_N at the end of Sc1, Sc2, and Sc3 were observed to be ±0.06 °C, 

±0.13 °C, and ±0.20°C, respectively. These values corresponded to Tc_N values of 37.7 °C, 

38.2 °C, and 38.8 °C, respectively. As observed from Figs. 5 and 6, q̇ had a greater effect on 

Tc_N in comparison to c, ρ, and k.

Comparison of Uncertainties in Tc_E and Tc_N.

The overall uncertainty in Tc_E and Tc_N was compared and analyzed, as shown in Fig. 7(a). 

The Tc_E was measured using a temperature measurement system (CoreTemp), which was 

accurate to ±0.1 °C. This value was considered to be the uncertainty in Tc_e. The overall 

uncertainty in Tc_N was calculated by combining the individual uncertainties due to 

variability in c, ρ, k, and q̇ using the sensitivity coefficient method for parameter uncertainty 

propagation [37]. The overall uncertainties in Tc_N at the end of Sc1, Sc2, and Sc3 were 

±0.06°C, ±0.14°C, and ±0.23°C, respectively. These values corresponded to rcJV values of 

37.7 °C, 38.2 °C, and 38.8 °C. A maximum overall uncertainty of ±0.23 °C was observed at 

the end of Sc3, corresponding to a Tc_N value of 38.8 °C. The Tc_N values predicted by the 

computational model over the entire range of tissue parameters were observed to fall mostly 

within the range of Tc_E values.

Comparison of Overall Uncertainties in Tc−N*  and Tc_N.

The overall uncertainties in the two numerical core body temperatures, Tc−N*  (based on the 

q̇* values) and Tc_N (based on the scaled-down metabolic rate, q̇), were compared in Fig. 

7(b). The methodology adopted for the quantification of uncertainties in Tc−N*  and Tc_N was 

the same. Higher uncertainty was observed in Tc_N and Tc−N*  at higher mean values. For 

example, uncertainty values in Tc−N*  at the end of Sc1, Sc2, and Sc3 were observed to be 

±0.08 °C, ±0.27 °C, and ±0.40 °C. This corresponded to Tc−N*  values of 37.9 °C, 38.9 °C, 

and 40.0 °C, respectively. Additionally, higher uncertainties were observed in compared to 

Tc_N. Maximum uncertainty of ±0.40 °C was observed in Tc−N*  compared to a ±0.23 °C for 

Tc_N. Baseline Tc−N*  showed a maximum deviation of 1.4°C or 3.6% {=[(40.0–38.6)/38.6] × 

100%}, from Tc_E and 1.2°C or 3.1% {=[(40.0–38.8)/38.8] × 100%} from Tc_N, at the end 

of Sc3.
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Cardiac Output and Stroke Volume.

The variation of cardiac output and stroke volume is illustrated in Fig. 8. The cardiac output 

varied from 5.5 L/min to 12.5 L/min and the stroke volume varied between 0.06 L/beat and 

0.08 L/beat during the entire firefighting activity. Higher cardiac output and stroke volume 

were observed during the firefighting scenarios compared to the preceding rest scenarios. 

For example, the maximum cardiac output observed during Sc2 was 11.5 L/min and that 

observed during R1 was 7.7 L/min. Similarly, the maximum stroke volume observed during 

Sc2 was 0.077 L/beat and that observed during R1 was 0.066 L/beat.

Discussion

The variability in tissue parameters is observed to have an effect on the core body 

temperature of firefighters during firefighting. This effect can be quantified using a whole 

body computational model as demonstrated in the results above. Using the sensitivity 

coefficient method for uncertainty analysis, we could assess the influence of individual and 

combined variability in tissue parameters on Tc_N.

Temperature Distribution.

From the results (Fig. 3(a)), the metabolic rate is observed to influence the steady-state 

temperature distribution in the human body. Elevated temperatures were observed in the 

inner zones (organ and gut) due to the higher metabolic rate in these domains. Similarly, 

higher temperature values were observed in the head due to the increased metabolic rate in 

the brain. However, the muscle and the suit layer exhibited reduced temperatures due to a 

lower metabolic rate and the ambient boundary condition, respectively.

Core Body Temperatures.

In our previous study [23], the numerical core body temperature was defined as the average 

tissue temperature (Tt) of the “organ” domain. However, in the current study, the whole body 

model was subdivided to include an exclusive “gut” domain which was enclosed within the 

organ domain. The average temperature in this domain was computed as the core body 

temperature. We assume that this modification could enhance the comparison between the 

numerical and experimental core body temperatures due to an improved localized averaging 

of the numerical core body temperature.

Variations in Core Body Temperatures.

An increase in Tc_N was observed at all scenarios. This can be attributed to the continuous 

heat generation in the tissues, and ineffective heat dissipation from the body due to the 

presence of the suit layer (Figs. 4(a) and 4(b)). The suit layer, comprising of a “jacket” and 

“pants,” was worn throughout the firefighting scenarios (Sc1, Sc2, and Sc3). However, the 

jacket was removed by the firefighter during the rest periods (R1 and R2). This could be one 

of the reasons for the observed reduction in temperature rise during R1 and R2 (Figs. 4(a) 

and 4(b)). Further, variations were observed between the trends of Tc_E and Tc_N. 

Specifically, there was a delay in time rate of change of Tc_N compared to that in Tc_E. One 

of the reasons for the delay could be a lower thermal diffusivity adopted in the numerical 

analysis.
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Effect of Variability in Input Parameters on Tc_N.

The variability in the q̇ contributed highest toward the overall uncertainty in Tc_N. One of the 

reasons for this effect is the higher variability in q̇ (18.4%) compared to the variability in c 
(6.6%), ρ (4.3%), and k (6.3%). Furthermore, the uncertainty in q̇ had an effect on the 

instantaneous metabolic rate, q̇m, which, in turn, influenced the Tc_N [26,27]. This could be 

another reason for the higher effect of variability in q̇ on the uncertainty in Tc_N.

Cardiac Output and Stroke Volume.

The cardiac output and the stroke volume obtained in the current study were mostly within 

the physiological range [26]. It may be noted that a decrease in both cardiac output and 

stroke volume was observed at the end of firefighting scenarios 2 and 3 (Sc2 and Sc3). The 

stroke volume was determined from the cardiac output and the heart rate. While the cardiac 

output was associated with the overall perfusion in the body, the perfusion in the organ and 

muscle varied with their respective metabolic rates. Therefore, a better correlation between 

the perfusion and the metabolic rate could help in improving the determination of cardiac 

output and stroke volume.

Limitations.

The following limitations have been identified which may change the outcomes reported 

above.

The whole body model assumed a constant value of ambient temperature (Tair = 25°C) and 

heat transfer coefficient (h = 4.7 W/m2°C). However, these parameters can vary in realistic 

conditions [30].

The range of parameter values of several tissues was based on studies [2,3] conducted using 

limited number of subjects (n<10). Evaluating the data of a larger group of human subjects 

may lead to a more accurate estimation of the range of tissue parameters. The accuracy of 

the tissue parameters can be improved by conducting a more comprehensive analysis of 

individual tissues in the human body. The weighted average and overall ranges of values of 

tissue parameters were calculated based on a fixed mass of tissues [5], while the percentage 

content of different types of tissues in the human body (for example, fat/muscle content) and 

the weight of tissues may vary from person to person. In other words, knowledge of 

firefighter-specific tissue parameters is expected to improve the prediction of Tc_N. Further, 

the variation of c, ρ, and k with temperature has not been accounted for in the present study.

The average q̇* of 3200 kcal/day (unsealed) calculated based on individual tissue values 

[2,3,16] was higher (~60%) than the reported average value of 2000 kcal/day (scaled) for a 

resting human being [23,30,31]. The resting q̇* for the firefighter could be higher, and it may 

influence the transient variation in q̇* with respect to the heart rate, which has been 

accounted for in this formulation. Therefore, incorporation of improved resting q̇* specific to 

individual firefighter could lead to a better comparison between the Tc_E and Tc_N.

In the future, evaluating the effect of the variations in ambient conditions, properties of the 

firefighting suit, and the variation of tissue parameters with temperature can further enhance 
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the applicability of the whole body model. Further, data-driven models have been reported to 

be effective for short-term prediction of the Tc_N of individual firefighters [38,39]. 

Therefore, individualized prediction of the Tc_N for a firefighter could be improved by 

developing hybrid models which combines the strength of the whole body model and the 

utility of data-driven predictive models.

Conclusion

The current study evaluated the effect of variability in tissue parameters on Tc_N of a 

firefighter using the whole body computational model. The uncertainty quantification 

facilitated in predicting a realistic range of Tc_N during firefighting by accounting for the 

natural variability in tissue parameters among the human population. Based on the results, 

variability in q̇ had the maximum contribution toward the overall uncertainty in Tc_N while 

variability in k was found to have the least effect on it. The applicability of the whole body 

computational model can be further extended to determine the Tc_N under different 

environmental factors and physiological conditions of individuals. Based on the model 

results, firefighters, athletes, and other personnel could be informed of when they should 

stop exercising to prevent health problems that arise due to higher thermal stress. This can 

be achieved using minimal real time data from the subject.
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Appendix

This section includes the governing equations of the whole body model which was 

previously developed by Paul et al. [23]. The transient thermal response of the whole body 

was determined by solving two equations simultaneously: (1) the Pennes’ bioheat equation, 

to calculate the tissue temperature of the body and (2) the energy balance equation, to 

evaluate the change in blood temperature due to tissue-blood heat exchange. The Pennes’ 

equation is defined as

ρtct
∂T t
∂t = kt ∇

2T t + q̇m + ρblood Cblood ω Tblood  − T t (A1)

where subscripts “t” and “blood” represent the properties of tissue and blood, respectively, T 
represents the temperature and q̇m is the volumetric metabolic heat generation. The Tblood 

was represented as a lumped parameter and is computed using the energy balance equation, 

given as
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ρblood cblood Vblood 
dTblood 

dt = − ρtctωavg Vbody Tblood  − Twt (A2)

where Vbody is the combined volumes of all the domains of the human body. The volumetric 

average blood perfusion rate per unit volume of tissue, ωavg, and the perfusion weighted 

average tissue temperature, Twt, are defined as

ωavg = 1
Vbody

∭
Vbody

ωdVbody (A3)

Twt = 1
ωavgVbody

∭
Vbody

ωT tdVbody (A4)

Nomenclature

A age (yr)

BSA body surface area (m2)

c specific heat capacity (J/kg °C)

E heat loss due to sweating (W/m2)

f intrinsic thermal efficiency (dimensionless)

h overall heat transfer coefficient (W/m2 °C)

HR heart rate (beats/min)

k thermal conductivity (W/m °C)

m mass (kg)

MWC maximum working capacity (W/m2)

p vapor pressure of water (mm Hg)

q̇ scaled-down resting metabolic rate (W/m3)

q̇m instantaneous metabolic rate (W/m3)

q̇* resting metabolic rate obtained from literature (W/m3)

R rest period

RM increase in metabolic rate per unit heart rate (beats m2/W 

min)

S simulation result
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Sc firefighting scenario

t time (s)

T temperature (°C)

Tc core body temperature

Tc_E experimental core body temperature

Tc_N numerical core body temperature based on q̇

Tc−N* numerical core body temperature based on q̇*

u simulation uncertainty

uxi
experimental uncertainty of a tissue property

V volume (m3)

w amount of generated sweat available for evaporation

W weight of the firefighter (kg)

X mass weighted average value of tissue property

xmin,tissue minimum value of any tissue property

xmax,tissue maximum value of any tissue property

Greek Symbols

ρ density (kg/m3)

ω blood perfusion rate (1/s)

Subscripts

air air

avg average

blood blood

cl clothing

e evaporative

gu gut

he head

max maximum
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min minimum

mu muscle

n nominal (baseline)

or organ

sk skin

t tissue

wt perfusion weighted average

0 rest (initial)
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Fig. 1. 
The heart rate data of a firefighter during the entire firefighting training drill comprising of 

work (Sc) and rest (R) conditions
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Fig. 2. 
(a) A schematic of the 3D whole body model and (b) a typical mesh used for the 

computational simulations
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Fig. 3. 
Contour plot of the whole body temperature at (a) steady-state and (b) at the end of work 

scenario 2 (Sc2)
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Fig. 4. 
(a) Comparison of numerical core body temperature (Tc_N* ) with experimental core 

temperature (Tc_E) and (b) comparison of Tc_E with core body temperature based on scaled-

down metabolic rate (Tc_N)
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Fig. 5. 
Uncertainty in Tc_N due to variability in (a) specific heat, c(b) density, ρ and (c) thermal 

conductivity, k
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Fig. 6. 
Uncertainty in Tc_N due variability in metabolic rate, q̇
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Fig. 7. 
(a) Comparison of uncertainty in Tc_E, determined based on the error in temperature 

measurement system, with that in Tc_n calculated based on combined uncertainties due to 

variability in ρ, q̇, c, and k and (b) comparison of TC_E with the two numerical core 

temperatures (Tc_N, Tc_N* )
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Fig. 8. 
Variation of cardiac output and stroke volume during firefighting activity
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